Large Scale Hydrodynamic Studies in the Northern Gulf of Mexico

Presented by:
Scott C. Hagen
Acknowledgements

- Peter Bacopoulus
- Matt Bilskie
- Ammarin Daranpob
- Stephen Medeiros
- David Coggin
- Mike Salisbury
- Hugh Roberts
- John Atkinson
- Zach Cobell
- Shan Zou
Initial Talking Points

We have developed a models for coastal inundation throughout the entire western panhandle and Alabama and for Franklin, Wakulla & Jefferson counties

We apply the model and present the results to assess model skill

We are about to begin production of new FEMA DFIRMs
Carrabelle / New / Crooked River
Vertical Feature Extraction

• Find significant impediments
 – Roads
 – Natural terrain features
 – Man made terrain features
• Use automation to find features that the eye doesn’t catch
 – Irregular
 – Generally terrain, not structures
• Include features as mesh element edges

David Coggin
PADCIRC Model

- **Parallelized Advanced Circulation, Two-Dimensional Depth-Integrated** (PADCIRC-2DDI...henceforth, PADCIRC)

 - Long-wave, coastal and ocean circulation model (e.g., astronomic tides, wind/pressure forced flow, channels with inflows)

 - Solves the shallow water equations through the Generalized Wave Continuity Equation formulation

 - Finite element based (i.e., unstructured grids)

 - Permits wetting/drying, weir structures (e.g., roadways), culverts and piers

 - Allows for linking with wave models

 - Also a version that is fully coupled with SWAN
Shallow Water Equations

Continuity Equation: \[
\frac{\partial \zeta}{\partial t} + \frac{\partial U H}{\partial x} + \frac{\partial V H}{\partial y} = 0
\]

Deviation from Reference Datum

Depth-Integrated Velocity: x-direction

Depth-Integrated Velocity: y-direction

Momentum Equation (x Direction):
\[
\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} - fV = - \frac{\partial}{\partial x} \left[\frac{p_s}{\rho_0} + g(\zeta - \alpha \eta) \right] + \frac{1}{H} M_x + \frac{\tau_{sx}}{\rho_0 H} - \tau_x U
\]

Momentum Equation (y Direction):
\[
\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + fU = - \frac{\partial}{\partial y} \left[\frac{p_s}{\rho_0} + g(\zeta - \alpha \eta) \right] + \frac{1}{H} M_y + \frac{\tau_{sy}}{\rho_0 H} - \tau_y V
\]
Model Skill Assessment Strategy

• Stability
• Gauge & HWM Data
 – Phasing of surge
 – Tidal signal
 – Width/shape of the storm tide hydrograph
 – Peak elevations

Hugh Roberts
John Atkinson
Zach Cobell
Shan Zou
Wind Forcing

• Provided by Oceanweather, Inc.
• Nested
Wave Forcing

• Independently computed with SWAN
 – Slinn Engineering

• Temporal coverage during entire storm
Surface Characteristics

- Bottom roughness
- Anisotropic reduction of wind stress
- Local shielding from vegetative canopy
System Summary

- http://webstokes.ist.ucf.edu
- **Current Resources ~6.6TFlops (linpack)**
 - 98 blades at 908 cores (x86_64)
 - ~2TB of memory
 - ~48TB of storage (raw)
 - Infiniband: 144 DDR sockets
- **Recent Acquisition ~10.1 TFlops (linpack)**
 - 139 blades at 1400 cores (x86_64)
 - ~4TB of memory
 - ~54TB storage (raw)
 - Infiniband: 144 DDR + 72 QDR sockets
 - 15 expansion slots
 - Additional Nvidia S2070 GPU units
PADCIRC-2DDI Run Times

- 256 processors
 - ~8,500 nodes per core
- 4 day storm simulation
 - ~4 hours of wall clock time
Hurricane Ivan
9/13/2004 0:00 – 9/17/2004 0:00
HURRICANE IVAN
Sept. 2 – 24, 2004
HIGHEST WINDS: 165 mph
LOWEST PRESSURE: 910 mbar
Comparison of Gauge Peaks to ADCIRC Simulation

Ivan (with waves)

y = 0.9697x
R² = 0.7419
Hurricane Katrina
8/25/2005 12:00 – 8/30/2005 0:00
HURRICANE KATRINA
Aug. 23-30, 2005
HIGHEST WINDS: 175 mph
LOWEST PRESSURE: 902 mbar
Comparison of Gauge Peaks to ADCIRC Simulation
Katrina (with waves)

$y = 0.9754x$
$R^2 = 0.8869$
Comparison of Measured HWM to ADCIRC Simulation
Katrina (with waves)

\[y = 0.9455x \]

\[R^2 = 0.4608 \]
Summary

A faithful representation of the physical system, forcing processes (wind, pressure, tides, riverine flows, waves) and of the flow itself (through grid resolution and accurate algorithms) is critical to a truly predictive astronomic and storm tide model.

Demonstrated that a large-scale (~2.2M nodes) model can run efficiently with skill.
Ecological Effects of Sea Level Rise in the Northern Gulf of Mexico (EESLR-NGOM)

The Team

University of Central Florida
Scott Hagen (Science PI)
Denise DeLorme
Linda Walters
Dingbao Wang
John Weishampel
George Yeh

Northwest Florida Water Management District
Graham Lewis (Applications PI)

Florida State University
Wenrui Huang

University of Florida
Don Slinn

University of South Carolina
Jim Morris

Dewberry, Inc.
Jerry Sparks
Susan Taylor
Ryan Towell

The Goal
To assess the ecological impacts of SLR with an interdisciplinary and applications-based approach.
Ecological Effects of Sea Level Rise in the Northern Gulf of Mexico (EESLR-NGOM)

Acknowledgement

Peter Bacopoulos
Ammarin Daranpob
Davina Passeri
Daina Smar

University of Central Florida
Coastal Hydroscience Analysis, Modeling & Predictive Simulations Laboratory
http://champs.cecs.ucf.edu
EESLR-NGOM Outline

• Discussion of EESLR-NGOM Project Process.
• How does sea level rise impact surge & tides?
• What if we take a dynamic vs. static approach?
 → Let’s examine this for SLR of 15.2 cm, 30.5 cm, & 1.0 m (6 in., 1.0 ft., & 3.28 ft.).
• Conclusion and implication.
Marsh, Oyster & SAV Assessments

Collected Earth Data

ASTER NDVI

Gage Station

NOAA Tidal Data

USGS Surface Water Data

LiDAR

EESLR-NGOM Project Process

Water surface elevation (m)

Gage Height (m)

Elevation (m)
EESLR-NGOM Project Process

Field/Lab Experiments

Surface Roughness

Sediment Cores and Grain Size Distribution

Total Suspended Solids
Apalachicola, FL

Deviation from MSL (m)

0 50 100 150 200

Percent Finer

Grain Size (mm)

100 80 60 40 20 0

Percent Finer

0 0.0001 0.001 0.01 0.1 1

Grain Size (mm)

10 1 0.1 0.01 0.001 0.0001

Apalachicola, FL
EESLR-NGOM Project Process

Biomass Density Sample

Field/Lab Experiments

Marsh Organs
EESLR-NGOM Project Process

Downscaled General Circulation Model

Intensity-Duration-Frequency Curve

30-Yr, 24-Hr Design Storm
Model Domain

Apalachicola River

Preliminary Results

Finite Element Mesh

Elevation (m)

-5.0
-3.5
-2.0
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0

USGS Station ID 02359170

Apalachicola River
NOAA Station 8728690

EESLR-NGOM Project Process

Model Forcing Data

Astronomic Tide

Rating Curve

Time-Series Flow Rate Near NOAA Station 8728690

37,465 elements
18,928 nodes
Max. elevation ≈ 10 m
Max. depth ≈ 8 m

USGS Station 02359170

Gage Height (m)

0
200
400
600
800
1000
1200
1400
1600
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
17-Jun 18-Jun 19-Jun 20-Jun

Discharge (cms)

0
200
400
600
800
1000
1200
1400
1600
0123

Flow rate (cms)

8:30 PM 8:30 AM 8:30 PM

Tide only
Tide-inflow
Tide-inflow-present storm
Tide-inflow-future storm

0
-500
-1000
500
1000
1500
2000
2500

8:30 PM 8:30 AM 8:30 PM
SLR Application

• SLR tests included 15.2 cm, 30.5 cm, & 1 m (Think 6 in., 1 ft., & ≈3.28 ft.)

• Static = existing maximum was elevated by SLR computational node by node max for surge or tides

• Dynamic = max was simulated w/SLR included
 • Simulated surge from top five storms
 + SLR incorporated as steric effect
 • Simulated astronomic tides
 + SLR incorporated as steric effect
0.2% (500-year) floodplain
Top 5 contributing storms
Surge w/1.0 m SLR

Static
Surge w/1.0 m SLR

Dynamic
Surge w/1.0 m SLR

Static
Surge w/1.0 m SLR

Dynamic
Surge w/1.0 m SLR

Static
Surge w/1.0 m SLR

Dynamic
Tides w/30.5 cm SLR

Static
Tides w/30.5 cm SLR

Dynamic
Tides w/30.5 cm SLR

Static
Tides w/30.5 cm SLR

Dynamic
Tides w/30.5 cm SLR

Static
Tides w/30.5 cm SLR

Dynamic
Floodplain impacted by SLR

<table>
<thead>
<tr>
<th>Sea level rise (m)</th>
<th>Approach</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomic tides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.152</td>
<td>Static</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>41</td>
</tr>
<tr>
<td>0.305</td>
<td>Static</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>137</td>
</tr>
<tr>
<td>1.000</td>
<td>Static</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>626</td>
</tr>
<tr>
<td>Storm surge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.152</td>
<td>Static</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>54</td>
</tr>
<tr>
<td>0.305</td>
<td>Static</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>104</td>
</tr>
<tr>
<td>1.000</td>
<td>Static</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>360</td>
</tr>
</tbody>
</table>
Conclusion

• Tide & surge inundation are nonlinearly related to sea level rise (SLR)

Implication

• We are applying a dynamic approach with EESLR-NGOM to identify impacted areas*

* The following slides demonstrate a biologically dynamic relationship in a coastal marsh region.
MLW in coastal St. Johns: Present Sea
MLW in coastal St. Johns: 30.5 cm SLR
Calculation procedure

MLW & MHW
are determined via analysis of simulated tidal record

Biomass production
is determined by applying biomass curve spatially

\[E_n \text{ elevation} \]
\[D_n \text{ relative elevation} = f(E_n; \text{MLW}_n \& \text{MHW}_n) \]

\[B_n \text{ production} = f(D_n; a_n, b_n \& c_n) \]

Tidal modeling & analysis

Biomass curve from field experiments
Biomass production: Present sea state
Biomass production: 30.5 cm SLR.
Managed accretion

Natural Accretion + Thin Layer Disposal

\[E_n \text{ elevation} \]
\[\text{obtained from DEM of hydrodynamic model} \]

\[D_n \text{ relative elevation} \]
\[D_n = f(E_n; \text{MLW}_n \& \text{MHW}_n) \]

\[B_n \text{ production} \]
\[B_n = f(D_n; a_n, b_n, c_n) \]

- Tidal modeling & analysis
- Biomass curve from field experiments
Biomass production w/managed accretion: 30.5 cm SLR.
To paraphrase a climate science motto:

“The sea level is rising, the best we can do now is to manage the unavoidable and avoid the unmanageable.”
10th International Conference on Hydroscience & Engineering

http://iche2012.org

November 4 - 7, 2012 at the Rosen Plaza Hotel

The Water Cycle Under a Changing Climate: Using Hydroscience and Engineering for a Sustainable Future